Image Image Image Image Image Image Image Image Image Image
Scroll to top


Glossary of TRIZ

Glossary of TRIZ

| On 25, Mar 2001

A shorter version of this paper first appeared in “Izobretenia” v.II, Autumn, 2000, the publication of the Altshuller Institute.

Victor Fey
© 2001 The TRIZ Group, LLC

TRIZ is fast spreading in the technological world. Thousands of people become acquainted with TRIZ every year through various presentations, courses, seminars, and publications.

Often TRIZ materials developed by different authors contain terminology unique to a particular author and not used by others. This is mainly caused by variations in translation from Russian. This creates confusion among TRIZ novices, for they cannot always recognize the equivalency of different terms describing the same notion (compare, for example, synonyms “Engineering Contradiction”, “Technical Contradiction”, and “System Conflict” used by different authors).

Frequently, however, one can read articles that use the same names for different notions of TRIZ. For instance, the term “Patterns of Technological System Evolution” in some publications is equivalent to the term “Laws of Technological System Evolution”, and in other publications – to the term “Lines of Technological System Evolution”, although the latter two terms are not identical (the Laws define general directions of evolution, while the Lines specify particular stages of the evolution along these directions).

Use of a common professional lingo is the necessary condition for effective communication among the members of the global TRIZ community. The proposed glossary is the first attempt to develop such a lingo for English-speaking TRIZ practitioners.

The glossary is not by any means exhaustive; it contains mainly basic terms of TRIZ gleaned from various English-language literature source known to the author: books, university courses, conference papers and on-line articles. Assembling a comprehensive glossary of TRIZ that would adequately reflect the evolving body of knowledge this science will require contributions from many enthusiasts. The author will greatly appreciate any future help in improving this glossary.



Algorithm for Inventive Problem Solving (ARIZ)

The central analytical tool of TRIZ (ARIZ is a Russian abbreviation). Its basis is a sequence of logical procedures for analysis of a vaguely or ill-defined initial problem/situation and transforming it into a distinct System Conflict. Consideration of the System Conflict leads to the formulation of a Physical Contradiction whose elimination is provided by maximal utilization of the resources of the subject system. ARIZ puts together in a system most fundamental concepts and methods of TRIZ such as IdealTechnological System (Ideal System), System Conflict, Physical Contradiction, Substance-Field Analysis, Standards, and theLaws of Technological System Evolution.

Altshuller’s Matrix

See Conflict Matrix

Altshuller’s metrics

See Technology assessment curves

Anticipatory Failure Determination

A TRIZ-based method for analysis and prevention of design failure modes.


See Object

Auxiliary function

A function supporting the system’s Primary Function.

Auxiliary tool

A tool supporting the performance of the maintool(s). Particularly, auxiliary tools perform measurement and/or detection in a system whose Primary Function is not measurement or detection.


Biased bi(poly)-systems

See Shifted bi(poly)-systems


A system consisting of two mono-systems.


Chain sufield

A sufield of the type shown below:

Coefficient of convolution, Cc

A measure of the system’s Degree of Ideality – a ratio of the number of sufields to the number of elements of these sufields (or a ratio of the number of functions to the number of sufield elements involved in the performance of these functions). For an elementary sufield, Cc = 1/3; for a chain sufield, Cc = 2/5; for a double sufield, Cc = 1/2.

Completely convoluted bi- or poly-system

A completely integrated bi– or poly-system performing two or more functions. In such systems, sub-systems responsible for individual functions are merged into a substance; their separation is impossible without disintegrating the whole system (e.g., in photochromic reading glasses, two functions – eyesight enhancement and shielding sun lights – are performed by one substance of the lens material).

Compound (complex) sufield

A sufield of the type shown below:

Conflict Area

See Conflict Domain

Conflict Domain (Operation Zone, Conflict Area)

In ARIZ, a space in the system that contains conflicting components.

Conflict Matrix (Contradiction Matrix, Altshuller’s Matrix)

A 39×39 matrix linking Typical System Conflicts with the Inventive Principles.

Conflicting components

System’s components involved in a SystemConflict.

Contradiction Matrix

See ConflictMatrix.

Convolution (Integration, Trimming, Pruning)

An evolutionary process of increasing the Degreeof Ideality by elimination of sub-systems and assigning their functions to other sub-systems.


Degree of Ideality

A measure of the system’s ideality usually expressed as the ratio of the system’s
functionality over the system’s cost:

Directed Evolution

See TRIZ Technology Forecasting

Double sufield

A sufield of the type shown below:



Result of interaction of fields and substances. An individual effect can be modeled as follows:

Elementary sufield

A sufield containing two substances and a field:

Engineering Conflict

See System Conflict

Engineering Contradiction

See System Conflict


Immediate physical surroundings of a technological system or of its part.



The energy needed for interaction of two substances. In addition to four fundamental fields – electromagnetic, gravitational, and nuclear fields of weak and strong interactions – TRIZ deals with engineering fields, such as mechanical, thermal, electric, magnetic, and chemical. These fields manifest themselves through many groups of physical and chemical phenomena.


A purposeful physical interaction between two components of a technological system. Description of a function includes the names of the physical action and of the object of the action.


Generic Principles for Overcoming Physical Contradictions

See Separation Principles

Guided Technology Evolution

See TRIZ Technology Forecasting


Harmful function/action

A function/action that hinders performance of the Primary Function.

Heterogeneous bi(poly)-system

A system consisting of mono-systems performing different functions.

Higher-level system

See Supersystem.

Homogeneous bi(poly)-system

A system consisting of mono-systems performing similar or identical functions.


Ideal Final Result

An ideal solution of an engineering design problem based on the notion of Ideal Technological System.

Ideal Technological System

A system that is absent as a physical entity, but that fully perfoms the prescribed function.

Incomplete sufield

A sufield containing fewer than three elements.

Initial Situation (Initial Problem)

Original problem statement, usually a cluster of various problems.


See Convolution.

Inventive Principles

There are 50 typical techniques (operators) for overcoming System Conflicts; many of them may contain a few sub-techniques.

Inverse bi(poly)-system

A system whose sub-systems have opposite properties.


Knowledge Base of Engineering Applications of Physical, Chemical and Geometric Effects

A set of physical, chemical and geometric effects arranged by a functional principle.


Law of Completeness

This law states that an autonomous technological system must include four minimally functioning principal parts: an engine, a transmission, a working means, and a control means.

Law of Elimination of Human Involvement

This law states that technological systems evolve in the direction of delegation functions performed by humans to technological systems.

Laws of Engineering System Evolution

See Laws of Technological System Evolution

Law of Harmonization

This law states that the necessary condition for existence of an effective technological system is coordination of periodicity of actions (or natural frequencies) of its parts.

Law of Increasing Controllability

This law states that technological systems evolve in the direction of increased controllability of their components; this is often achieved by transition from elementary sufields to double and chain sufields.

Law of Increasing Degree of Ideality

The primary law of evolution of technological systems. It states that technological systems evolve in the direction of increasing their Degree of Ideality.

Law of Increasing Flexibility (Law of Increasing Dynamism)

This law states that technological systems evolve in the direction toward more flexible structures capable of adaptation to changing environmental conditions (multi-functionality) and to varying performance regimes.

Law of Non-Uniform Evolution of Sub-Systems

This law states that different sub-systems of technological systems evolve at different rates (along their own S-curves); this causes development of System Conflicts.

Law of Shortening of Energy Flow Path

This law states that technological systems evolve in the direction of shortening of energy passage through the system (from the engine to the working means).

Laws of Technological System Evolution (Laws of Engineering System Evolution, Patterns of Technological System Evolution, Trends of Technological System Evolution)

The Laws reflect significant, stable, and repeatable interactions betweenelements of technological systems and between the systems and their environments in the process of evolution.

Law of Transition to a Higher-Level System (Law of Transition to a Supersystem)

This law states that technological systems evolve in the general direction from mono-systems to bi– and poly-systems.

Law of Transition to a Micro-Level

This law states that technological systems evolve in the general direction of fragmentation of their components (first of all, fragmentation of working means).

Level of Invention

A qualitative measure of the degree of novelty of an invention.

Lines of Evolution

The Lines identify specific stages of evolution associated with particular Laws of
Technological System Evolution


Macro Physical Contradiction

In ARIZ, a Physical Contradiction formulated at the level of the whole component (e.g., the rod must be hot and cold).

Main tool

A tool performing the Primary Function.


A problem associated with major modifications of a system, i.e., with changing its physical principle of functioning.

Micro Physical Contradiction

In ARIZ, a Physical Contradiction formulated for the components’ ingredients (particles), e.g., for the rod to be both hot and cold, its particles must be moving both fast and slowly.

Minimal technological system

A system consisting of an object, tool, and energy of their interaction. It can be modeled by an elementary sufield.


A problem formulated according to the rule: “The system remains unchanged or even simplifies, but the harmful effect disappears, or a useful effect is obtained.” When solving a mini-problem, the physical principle of the system’s functioning is not changed.


A system performing one function.


Object (Article, Product)

A component of the system that is to be controlled (processed, modified, e.g., moved, machined, bent, turned, heated, expanded, charged, illuminated, measured, detected, etc.).

Operation Zone

See Conflict Domain


Partially convoluted bi(poly)-system

A bi or poly-system with reduced number of auxiliary components.

Patterns of Technological System Evolution

See Laws of Technological System Evolution

Physical action

A physical mechanism that enables performance of a specific function. For example, a function “cleaning a chemical solution from contaminants” may be based on such diverse physical actions as “moving the contaminants away from the solution”, or “disintegration of the contaminants”, and others.

Physical Contradiction

A situation when the same component must satisfy mutually exclusive demands to its physical state, e.g., be hot and cold, electrically conductive and insulative, etc.


A system consisting of more than two mono-systems.

Primary Function

The main purpose of existence of a technological system.


See Object.


See Convolution.

Psychological inertia

Predilection toward conventional ways to analyze and solve problems.



Substances, fields and other attributes of a technological system (e.g., time of functioning, occupied space, etc.) as well as of its environment and of an overall system that can be utilized to improve the system.



Evolution of technological systems can be illustrated by an S-shaped curve reflecting changes of the system’s main performance characteristics (or its benefit-to-cost ratio, Degree of Ideality) with time since its inception.

Separation Principles

The approaches to resolving Physical Contradictions: Separation of opposite properties in space, separation of opposite properties in time, separation of opposite properties between a system and its components.

Shifted bi(poly)-systems (Biased bi(poly)-systems)

Bi- or poly-systems whose functionally identical sub-systems differ in certain parameters such as size, color, weight, electrical conductivity, etc.

Standard Approaches to Solving Problems (Standard Solutions, Standard Techniques, Standards)

A set of the most effective typical transformations of technological systems based on the Laws of Technological System Evolution. Many Standards are written in the Substance-Field language.


In the Substance-Field Analysis, an element of a sufield, a technological system of any degree of complexity participating in performance of a function (physicalaction).

Substance-Field (Sufield) Analysis

A branch of TRIZ studying transformation and evolution of sufield structures.


A model of technological system consisting of substances and fields.


An unexpected benefit of invention.

Supersystem (Higher-level system)

System that includes the system under consideration as a sub-system.

System Conflict (Engineering Contradiction, Technical Contradiction)

An interaction between system’s parts when the useful function/action causes simultaneously a harmful effect, or introduction (intensification) of the useful function/action, or elimination or reduction of the harmful function/action causes deterioration or unacceptable complication of one of the parts or of the whole system.


Technology assessment curves (Altshuller metrics)

These curves (“Number of inventions vs. Time”, “Level of inventions vs. Time”, “Profitability of inventions vs. Time”) are used to define the position of the systemon its S-curve.


A component having direct physical interaction with an object (i.e., controlling the object).

Tool-Object-Product (TOP) Analysis

A techniques for linking Functional and Substance-Field Analyses.

Trends of Technological System Evolution

See Laws of Technological System Evolution.


See Convolution.

TRIZ Technology Forecasting (Directed Evolution, Guided Technology Evolution)

A systematic TRIZ approach to conceptual development of next-generation products and processes.

Typical System Conflicts (Typical Engineering Contradictions, Typical Technical Contradictions)

Despite immense diversity of technological systems, there is a finite number of typical System Conflicts such as productivity vs. accuracy, reliability vs. complexity, shape vs. speed, etc. These System Conflicts can usually be resolved by application of the Inventive Principles

Typical Techniques for Overcoming System Conflicts

See Inventive Principles.


Useful function/action

A function/action that contributes to the performance of the Primary Function.



Void is a discontinuity in a substance. Void is an exceptional resource, for it is always available, extremely cheap and can be easily mixed with other resources, forming, for instance, hollow and porous structures, foam, bubbles, etc.


  1. Altshuller, G.S., And Suddenly the Inventor Appeared, Technical Innovation Center, Worcester, MA, 1997.

  2. Altshuller, G.S., Creativity as an Exact Science, Gordon and Breach, N.Y., N.Y., 1988.

  3. Altshuller, G.S., The Innovation Algorithm, Technical Innovation Center, Worcester, MA, 1999.

  4. Altshuller, G.S., 40 Principles: TRIZ Keys to Technical Innovation, Technical Innovation Center, Worcester, MA, 1999.

  5. Fey V., Rivin E., The Science of Innovation: A Managerial Overview of the TRIZ Methodology, The TRIZ Group, MI, 1997.

  6. Fey V., Rivin E., Fundamentals of TRIZ, Course Book, Wayne State University, Detroit, MI, 2001.

  7. Salamatov Y., TRIZ: The Right Solution at the Right Time, Insytec, The Netherlands, 1999.

  8. Terninko, J., Zlotin, B., Zusman, A., Systematic Innovation: An Introduction to TRIZ, Responsible Management, NH, 1997.

Web Sources:

  • Ideation International, Inc.,

  • Invention Machine Corporation,

  • TRIZ Consulting, Inc.,

  • The TRIZ Journal,

  • The TRIZ Group, LLC,